If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8300=4.9t^2
We move all terms to the left:
8300-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+8300=0
a = -4.9; b = 0; c = +8300;
Δ = b2-4ac
Δ = 02-4·(-4.9)·8300
Δ = 162680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{162680}=\sqrt{196*830}=\sqrt{196}*\sqrt{830}=14\sqrt{830}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{830}}{2*-4.9}=\frac{0-14\sqrt{830}}{-9.8} =-\frac{14\sqrt{830}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{830}}{2*-4.9}=\frac{0+14\sqrt{830}}{-9.8} =\frac{14\sqrt{830}}{-9.8} $
| 4x-5+3x+6=-13 | | -3.7x+6.2=-7.3-5.8 | | -28=-4(3x-5) | | -6z-6z=-4z+3+2z | | 1.67x=30 | | 18r-18r+r-r+2r=20 | | (5/3)x=30 | | 2/3=19/x | | 0.3(x+0.9)=1.77 | | (5/3)t=30 | | 4x+39.3=64 | | 4z/(-16)=-2 | | 15+6x=67 | | x/9=5+13/18 | | -15=-4p+ | | 7h-17=60 | | x+x+120+2x+120=360 | | 1/4x+7=9 | | 2(4x+7)=-43+9 | | (3x-2/8)+(2-x/4)=1/2 | | 7(3y-4)=35 | | 14+5n=-4n+ | | 8x+21=9x+7 | | 7x=10x-30 | | 4x2-6=-12x | | 4(3x+8)=8+12x | | 6-2y=7y+1 | | 3(x-1)=-3x-3 | | -x+25=4x-10 | | t-32.8=(-27) | | 7(n-2)=19 | | 5z-5=6z-2 |